Deloitte @IROTRE DavE

Explaining Anomalies in Graphs with Grammars

Daniel Gonzalez Cedre

17 of August, 2023

Overview

1. Introduction to the Problem

2. Proposed Solution

3. Neural Architecture

4. Results

Introduction to the Problem

Introduction to the Problem Deloitte’s Goals

Service Task Archetype
. . Assessing and Modelin
Risk Mitigation g 2 cine,

hedging risk Prediction

. . . Accounting, Modeling,
Financial Services g "
taxes, auditing Pattern mining

. Finding & predictin: Classification

Fraud Detection ngeep 118 o
suspicious behavior Clustering

Preventative Predicting when to service Regression,
Maintenance Mechanical components Graph completion
. Preventing attacks Anomaly detection

Cyber Security 8 y >

and accidental breaches

Graph completion

Introduction to the Problem Deloitte’s Goals

Service Task Archetype

Finding & predicting Classification,

Fraud Detection e -)
suspicious behavior Clustering

Introduction to the Problem Fraud Detection

We want to detect and

A special case of anomaly detection, this is typically addressed by

classifying or clustering datapoints.

This has clear applications to detecting Medicare fraud, money

laundering, suspicious transactions fake user reviews, and more.

Introduction to the Problem Areas of Application

is relevant to many problems posed on relational data.
1. Classifying Medicare providers as categorically 775ky.

2. Given hubs of American Express salespeople:

* find salespeople with high rates of misconduct complaints,
e provide bebavioral explanations for these decisions,

* and give the client a way to monitor their hubs.
3. Detecting and predicting f7z:d on financial interaction data.
4. Given a network of sensors and a database of facts for an assembly line,

e find subnetworks with elevated risk profiles,

* preventively predict when hardware will need maintenance.

Introduction to the Problem Detecting Fraud

Agents can often be characterized
by

and domain-specific features.

Behavioral patterns are often
and 2
and features alone are not enough.
The largest connected component of the labeled
We want to leverage both of these EllipticBitcoin® dataset.

modalities to bisect the latent space.

a
Weber, M. et al. Anti-Money Laundering in Bitcoin. 2019.

ik

Introduction to the Problem Detecting Fraud

Agents can often be characterized
by

and domain-specific features.

Behavioral patterns are often

and 2

and features alone are not enough.

The largest connected component of the labeled
We want to leverage both of these EllipticBitcoin? dataset. Nodes in blue are licit

modalities to bisect the latent space. % while those in 7ed are

4 9 e P
Weber, M. et al. Anti-Money Laundering in Bitcoin. 2019.

ik

Introduction to the Problem Explainability

Since these decisions are often made in "and often

subject to strict and , justifying decisions is often crucial.

We need an explainable way to make these decisions.

‘e.g., Medicare, finance, commerce w

Introduction to the Problem Explainability

Node-based explainers can be thought of as oM_order explanations.

Edge-based explainers are then 1*-order aggregates.

Subgraph?? explainers aggregate information, but are

hierarchically ambiguous.

Can we gain context by arranging subgraph explanations hierarchically?

* Yuan, H. et al. “On Explainability of Graph Neural Networks via Subgraph Explorations”. 2021.

2 Serra, G. and Niepert, M. L2XGNN: Learning to Explain Graph Neural Networks. 2023. w

Proposed Solution

Can we use gmpb grammars for

explainable anomaly detection?

Proposed Solution Graph Grammars

Well, what 75 a graph grammar?

Proposed Solution Graph Grammars

A rule-based generative model for graphs.

.
&) —> aaybb @ — o _l>e

(a) A string rule with left-hand X and (b) A graph rule with left-hand X and

right-hand string with . right-hand graph with

Proposed Solution Relevance of Graph Grammars

Graph grammars are often used for

1. Molecular generation and drug synthesis‘”é

2. Statistical hypothesis testing and generative modeling789‘°

3. Software engineering and formal methods""*"

+ Guo, M. et al. “Polygrammar: Grammar for Digital Polymer Representation and Generation”. 2022b.

5 Guo, M. et al. “Data-Efficient Graph Grammar Learning for Molecular Generation”. 2022a.

6 Guo, M. et al. “Hierarchical Grammar-Induced Geometry for Data-Efficient Molecular Property Prediction”. 2023.

7 Sikdar, S. et al. “The Infinity Mirror Test for Graph Models”. 2023.

g Sikdar, S., Hibshman, J., and Weninger, T. “Modeling Graphs with Vertex Replacement Grammars”. 2019.

2 Sikdar, S., Shah, N, and Weninger, T. “Attributed Graph Modeling with Vertex Replacement Grammars”. 2022.
1o Hibshman, J., Sikdar, S., and Weninger, T. “Towards Interpretable Graph Modeling with Vertex Replacement Grammars”. 2019.
" Baresi, L. and Heckel, R. “Tutorial introduction to graph transformation: A software engineering perspective”. 2002.

= Engels, G., Lewerentz, C., and Schifer, W. “Graph grammar engineering: A software specification method”. 1987.

e Zhao, C., Kong, J., and Zhang, K. “Program behavior discovery and verification: A graph grammar approach”. 2010. w

Proposed Solution

Rule Extraction

How do we traditionally learn rules?

% °
o—@. \
°
SNe—e-! 0L e
o \ * o /o —e”|
° e o 7 — o6 \
g N e .- ‘.’ o
.\|./. ® .I,.

(a) Select a subgraph and

compute its

(b) Create a rule (c) Compress the subgraph.

corresponding to the

subgraph and

Subgraphs are induced by hierarchical clustering.

10

Proposed Solution An Example

[]
\ 1
—eo
Se—el P
o—° \ ® 00000000000000000
/‘.\.‘. .I./\.
.\‘./

Proposed Solution An Example

ol [amsllim
.:?;To/ ol.’\’ MTTT

Proposed Solution An Example

Proposed Solution An Example

.\ I
o—@
N\, _®
o—@ |
/‘/\ [00000000000
& e
o ®
000000
bl
— ofs

Proposed Solution An Example

.\ I
o—@
\b—«/?
o \ [0000000 ®
/
e [
000000
>
— ess 0— e
-0

Proposed Solution An Example

® !
o—
oot []
/./ \ [000000 ()
@7 ——
| (TT1T)
0000000000
[
— o-u o 0— e
-0

Proposed Solution An Example

.\ I

o—@
N [[T

/./ \ (YYY) ®

@7 ———

0000000000
o
@— o9 0— e Q—>-e7)

-@

Proposed Solution An Example

® A
o—e
Ne—0 | ? r
o\ 'YX X))
@7 —t
M | T
000000000C0OCGOCOO
[
@— oss 0— e @ -
-e

Proposed Solution An Example

m\._ | |_,
/./\ ® ®
/ ———
M | (TTIT)
0000000000000
[l
@— oss 0— e @ -
-@
L]
0 — o,

Proposed Solution An Example

: =T
\ —I
/./.\ L 4
@7 ——

Proposed Solution An Example

/0/
@7
0000000000000000
> ° _e
@ — o\,o\.,o D —> e 0 —-e7l
® 0,
— o, — e-0

Proposed Solution An Example

/0/
/
{
| M M Yssamn
000000000000OCOCGOOO
. » g
@ — O\,O\.,O E]—*.l,o (e
® 0,
) .\.. _) ._
% >

Proposed Solution An Example

©
————
0000000000000 0OCOCO

. » g

@— O\,O\.,O @— e Q—-e’l
° \ /E]

0 — oY 00— Je—0 Q — /o

\E] /

Proposed Solution Graph Generation

How do we use rules for generation?

o—0
o ./ \
0 71— o-¢ @ e
. val %
o
(a) Select a nonterminal (b) Choose a rule with (c) Integrate the subgraph
with its . matching left-hand side. with its

This is an example of a 7ule derivation.

Proposed Solution Rules as Subgraph Explainers

Grammar rules can highlight subgraphs

relevant to particular

°
oo
__\ °
I CE;
:.n)o o~

N\
[

Above, we found a

Proposed Solution Rules as Subgraph Explainers

Grammar rules can highlight subgraphs

_>.... ‘

relevant to particular

B
o—o
]
o—*" \
S
o e o°

Rule explanation.

Above, we found a

Proposed Solution Rules as Subgraph Explainers

Grammar rules can highlight subgraphs

. e F
relevant to particular Q- d
%
o—o Rule explanation.
0—@ |
./ \)
o—- o
\ @ N \
o.) | e o—g@
7\ /. [] \ /.
B) o—@ |
v \)
—*
| @ I.\
Above, we found a] i % o—°®
oL ‘./

Subgraphs covered by isomorphic rules.

ik

3

Proposed Solution Moving Away from Heuristics

Graph grammars are traditionally determined by heuristic methods like

1617

hierarchical clustering'#", tree decomposition'®'7, or hand-written rules.

[[(AR

Hierarchical clustering dendrogram Grammar-induced parse tree

“ Sikdar, S., Hibshman, J., and Weninger, T. “Modeling Graphs with Vertex Replacement Grammars”. 2019.

5 Sikdar, S., Shah, N., and Weninger, T. “Attributed Graph Modeling with Vertex Replacement Grammars”. 2022.
6 -

! Aguinaga, S. et al. “Growing Graphs from Hyperedge Replacement Graph Grammars”. 2016.

7 Aguifiaga, S., Chiang, D., and Weninger, T. “Learning Hyperedge Replacement Grammars for Graph Generation”. 2019. w

.14

Can we learn data-driven
P)

Neural Architecture

Neural Architecture Grammar Neural Network Architecture

(c",
a @ G : the input graph
]’(Cm : graph neural network
(v;) : node embeddings
g H (v.) p(e;) : edge probabilities
& : graph grammar
| TP L(B,7,9)

: predicted node labels
 : true node labels

L loss function
Given an input graph G, we compute node embeddings (s (v;) and predict class labels ;.
The embeddings also determine probabilities p(e;) for iid Bernoulli random variables on
each edge. We obtain a grammar & by iteratively sampling edges. The jont loss function

L(®,7,y) then optimizes for a good grammar and

ik

Neural Architecture Node & Edge Embeddings

For simplicity, nodes are embedded by a graph isomorphism network

(X) = MLP((A +(+ s)l)x)

with edge embeddings as a paraboloidal function of node embeddings™

(40> — 4 +1) + (40> — 4%, +1) +2¢
2+ 4

p(7):

s Xu, K. et al. “How Powerful are Graph Neural Networks?” 2019.

¥Since ¢ (X) is a stochastic tensor, p(x,, x,) can be treated like probabilities. w
16

Neural Architecture Joint Optimization

We jointly optimize an affine combination of two loss functions
L£(8,7,9) = M(®) + (1= N L))
with a given by
L(),y) = CrossEntropy (7, y)

The loss for the grammar should be inversely proportional to the number

of patterns the rules describe, which we call compressibility here

of rules up-to-isomorphism

L(®) o< 1 — Compressibility(®) = # of distinct rules

Neural Architecture Learning with Non-Difterentiable Losses

For gradient optimization, we would like to compute V £(®, 7, y) but

we can’t because £(®) is not differentiable in 0.

Treat & like a random variable*® and apply the policy-gradient theorem™
ViE[£(®)] =E [z(es) (v logp(ﬁ))}

and estimate the expectation using Monte Carlo sampling

N
E[£(8) (Vs logp(®))] ~ = >~ £(8,)(Vslogp(®5)

=1

**Recall that we construct & by randomly sampling edges.

Williams, R. J. “Simple statistical gradient-following algorithms for connectionist reinforcement learning”. 1992.. w

Results

Results Dataset

Description of the Bitcoin dataset.

Total Labeled #Licit # Illicit # Features

Nodes 203769 46564 42019 4545 165
Edges 234355 36624 - = -

Loss Behavior

EllipticBitcoin

—— Joint loss
Classification Cross Entropy
—— Grammar Compressibility

Loss

0.1-
V 6 1‘0 2‘0 3‘0 4‘0 5‘0
Epoch
A comparison of the three different loss functions over so epochs.

We have clearly yet to converge the node classifier.

20

Grammar Sizes

EllipticBitcoin

Original
—— Compressed

10000 -

Number of Rules

1000 -
6 1‘0 2‘0 3‘0 4‘0 5‘0
Epoch

Average sizes of the grammars before and after compressing isomorphic rules.

ik

21

Sampling Stability

EllipticBitcoin
Samples
—— Monte Carlo estimate
0.870 -
'S 0.865
Qo
e
©
o
[G]
> 0.860
1)
)
a
0.855 -
0.850 -
0 10 20 30 40 50
Epoch

Average of four Monte Carlo samples estimating E [E(Qﬁ) (Vv logp((%))} .

ik

22

Results Examples of Frequent Rules

Epoch1

0= ¢

The most popular rule from one of the sampled grammars at epoch 1.

This rule occurred 2093 times.

23

Results Examples of Frequent Rules

Epoch 5o
@ ® o,
0 ¢ 0 o 0= o8
X1208 X 437 X174

The three most frequent rules from one of the grammars at epoch so.

Their respective frequencies are shown below.

24

Results Moving Forward

Next steps on the way to publication:
1. Determine an adequate number of Monte Carlo samples per epoch.
2. Find good values for the hyperparameter A that weighs the losses.
3. GINs may be —consider GCNs or GAT:.
4. Experiment with more sophisticated grammar losses.
5. Consider the edge embeddings.

6. Find a better way to determine nonterminal symbols.

25

Results Acknowledgements

Sanmitra Bhattacharya
Tim Weninger
Sal Aguinaga
Balaji Veeramani

Sunil Reddy Tiyyagura

26

Thank you!

Infrequent Rules

Epoch so
Examples of of various lengths.

Infrequent Rules

Epoch so
Examples of subgraphs with

Infrequent Rules

=
oy

Examples of subgraphs with

Appendix Infrequent Rules

o~ ¥
&L b

Examples of wezr subgraphs.

	Introduction to the Problem
	Deloitte's Goals
	Fraud Detection
	Areas of Application
	Detecting Fraud
	Explainability

	Proposed Solution
	Graph Grammars
	Relevance of Graph Grammars
	Rule Extraction
	An Example
	Graph Generation
	Rules as Subgraph Explainers
	Moving Away from Heuristics

	Neural Architecture
	Grammar Neural Network Architecture
	Node & Edge Embeddings
	Joint Optimization
	Learning with Non-Differentiable Losses

	Results
	Dataset
	Loss Behavior
	Grammar Sizes
	Sampling Stability
	Examples of Frequent Rules
	Moving Forward
	Acknowledgements

	Appendix
	Infrequent Rules

