
Explaining Anomalies in Graphs with Grammars

Daniel Gonzalez Cedre
17th of August, 2023

Overview

1. Introduction to the Problem

2. Proposed Solution

3. Neural Architecture

4. Results

0

Introduction to the Problem

Introduction to the Problem Deloitte’s Goals

Service Task Archetype

Risk Mitigation Assessing and
hedging risk

Modeling,
Prediction

Financial Services Accounting,
taxes, auditing

Modeling,
Pattern mining

Fraud Detection Finding & predicting
suspicious behavior

Classification,
Clustering

Preventative
Maintenance

Predicting when to service
Mechanical components

Regression,
Graph completion

Cyber Security Preventing attacks
and accidental breaches

Anomaly detection,
Graph completion

1

Introduction to the Problem Deloitte’s Goals

Service Task Archetype

Risk Mitigation Assessing and
hedging risk

Modeling,
Prediction

Financial Services Accounting,
taxes, auditing

Modeling,
Pattern mining

Fraud Detection Finding & predicting
suspicious behavior

Classification,
Clustering

Preventative
Maintenance

Predicting when to service
Mechanical components

Regression,
Graph completion

Cyber Security Preventing attacks
and accidental breaches

Anomaly detection,
Graph completion

1

Introduction to the Problem Fraud Detection

Wewant to detect fraudulent transactions and suspicious agents.

A special case of anomaly detection, this is typically addressed by
classifying or clustering datapoints.

This has clear applications to detectingMedicare fraud, money
laundering, suspicious transactions fake user reviews, and more.

2

Introduction to the Problem Areas of Application

Anomaly detection is relevant to many problems posed on relational data.

1. Classifying Medicare providers as categorically risky.

2. Given hubs of American Express salespeople:

• find salespeople with high rates of misconduct complaints,
• provide behavioral explanations for these decisions,
• and give the client a way to monitor their hubs.

3. Detecting and predicting fraud on financial interaction data.

4. Given a network of sensors and a database of facts for an assembly line,

• find subnetworkswith elevated risk profiles,
• preventively predict when hardware will need maintenance.

3

Introduction to the Problem Detecting Fraud

Agents can often be characterized
by behavioral interaction patterns
and domain-specific features.

Behavioral patterns are often
infrequent and difficult to detect,
and features alone are not enough.

We want to leverage both of these
modalities to bisect the latent space.

The largest connected component of the labeled
EllipticBitcoina dataset. Nodes in blue are licit
agents, while those in red are illicit.

a Weber, M. et al. Anti-Money Laundering in Bitcoin. 2019.

4

Introduction to the Problem Detecting Fraud

Agents can often be characterized
by behavioral interaction patterns
and domain-specific features.

Behavioral patterns are often
infrequent and difficult to detect,
and features alone are not enough.

We want to leverage both of these
modalities to bisect the latent space.

The largest connected component of the labeled
EllipticBitcoina dataset. Nodes in blue are licit
agents, while those in red are illicit.

a Weber, M. et al. Anti-Money Laundering in Bitcoin. 2019.

4

Introduction to the Problem Explainability

Since these decisions are often made in high-stakes situations1 and often
subject to strict scrutiny and regulation, justifying decisions is often crucial.

We need an explainableway to make these decisions.

1e.g., Medicare, finance, commerce
5

Introduction to the Problem Explainability

Node-based explainers can be thought of as 0th-order explanations.
Edge-based explainers are then 1st-order aggregates.

Subgraph23 explainers aggregate higher-order information, but are
hierarchically ambiguous.

Can we gain context by arranging subgraph explanations hierarchically?

2 Yuan, H. et al. “On Explainability of Graph Neural Networks via Subgraph Explorations”. 2021.
3 Serra, G. and Niepert, M. L2XGNN: Learning to Explain Graph Neural Networks. 2023.

6

Proposed Solution

Can we use graph grammars for
explainable anomaly detection?

6

Proposed Solution Graph Grammars

Well, what is a graph grammar?

7

Proposed Solution Graph Grammars

A rule-based generative model for graphs.

X aaYbbb

(a) A string rule with left-handX and
right-hand string with boundary characters.

X
Y

(b) A graph rule with left-handX and
right-hand graph with boundary edges.

8

Proposed Solution Relevance of Graph Grammars

Graph grammars are often used for

1. Molecular generation and drug synthesis456

2. Statistical hypothesis testing and generative modeling78910

3. Software engineering and formal methods111213

4 Guo, M. et al. “Polygrammar: Grammar for Digital Polymer Representation and Generation”. 2022b.
5 Guo, M. et al. “Data-Efficient Graph Grammar Learning for Molecular Generation”. 2022a.
6 Guo, M. et al. “Hierarchical Grammar-Induced Geometry for Data-Efficient Molecular Property Prediction”. 2023.
7 Sikdar, S. et al. “The Infinity Mirror Test for GraphModels”. 2023.
8 Sikdar, S., Hibshman, J., andWeninger, T. “Modeling Graphs with Vertex Replacement Grammars”. 2019.
9 Sikdar, S., Shah, N., andWeninger, T. “Attributed GraphModeling with Vertex Replacement Grammars”. 2022.
10 Hibshman, J., Sikdar, S., andWeninger, T. “Towards Interpretable GraphModeling with Vertex Replacement Grammars”. 2019.
11 Baresi, L. and Heckel, R. “Tutorial introduction to graph transformation: A software engineering perspective”. 2002.
12 Engels, G., Lewerentz, C., and Schäfer, W. “Graph grammar engineering: A software specification method”. 1987.
13 Zhao, C., Kong, J., and Zhang, K. “Program behavior discovery and verification: A graph grammar approach”. 2010.

9

Proposed Solution Rule Extraction

How do we traditionally learn rules?

(a) Select a subgraph and
compute its boundary.

2

(b) Create a rule
corresponding to the
subgraph and boundary.

2

(c) Compress the subgraph.

Subgraphs are induced by hierarchical clustering.

10

Proposed Solution An Example

2 1

1
1

1
1

1

11

2
0

2 1 1

1 1
1

1

1
2

1
0

11

Proposed Solution An Example

2 1

1
1

1
1

1

11

2
0

2 1 1

1 1
1

1

1
2

1
0

11

Proposed Solution An Example

2

1

1
1

1
1

1

11

2
0

2 1 1

1 1
1

1

1
2

1
0

11

Proposed Solution An Example

2

1

1
1

1
1

1

11

2
0

2 1 1

1 1
1

1

1
2

1
0

11

Proposed Solution An Example

2 1

1
1

1
1

1

11

2
0

2 1 1

1 1
1

1

1
2

1
0

11

Proposed Solution An Example

2 1

1
1

1
1

1

11

2
0

2 1 1

1 1
1

1

1
2

1
0

11

Proposed Solution An Example

2 1

1

1
1

1

1

11

2
0

2 1 1

1 1
1

1

1
2

1
0

11

Proposed Solution An Example

2 1

1

1
1

1

1

11

2
0

2 1 1

1 1
1

1

1
2

1
0

11

Proposed Solution An Example

2 1

1
1

1
1

1

11

2
0

2 1 1

1 1
1

1

1
2

1
0

11

Proposed Solution An Example

2

1

1
1

1
1

1

11

2
0

2 1 1

1 1
1

1

1
2

1
0

11

Proposed Solution An Example

2

1

1
1

1
1

1

1

1

2
0

2 1 1

1 1
1

1

1
2

1
0

11

Proposed Solution An Example

2 1

1
1

1
1

1

1

1

2

0

2 1 1

1 1
1

1

1
2

1
0

11

Proposed Solution An Example

2 1

1
1

1
1

1

11

2

0

2 1 1

1 1
1

1

1
2

1
0

11

Proposed Solution Graph Generation

How do we use rules for generation?

1
1

12

(a) Select a nonterminal
with its boundary edges.

2

(b) Choose a rule with
matching left-hand side.

1
1

1

(c) Integrate the subgraph
with its boundary edges.

This is an example of a rule derivation.

12

Proposed Solution Rules as Subgraph Explainers

Grammar rules can highlight subgraphs
relevant to particular node decisions.

Above, we found a suspicious node.

1

Rule explanation.

Subgraphs covered by isomorphic rules.

13

Proposed Solution Rules as Subgraph Explainers

Grammar rules can highlight subgraphs
relevant to particular node decisions.

Above, we found a suspicious node.

1

Rule explanation.

Subgraphs covered by isomorphic rules.

13

Proposed Solution Rules as Subgraph Explainers

Grammar rules can highlight subgraphs
relevant to particular node decisions.

Above, we found a suspicious node.

1

Rule explanation.

Subgraphs covered by isomorphic rules.

13

Proposed Solution Moving Away fromHeuristics

Graph grammars are traditionally determined by heuristic methods like
hierarchical clustering1415, tree decomposition1617, or hand-written rules.

Hierarchical clustering dendrogram Grammar-induced parse tree

14 Sikdar, S., Hibshman, J., andWeninger, T. “Modeling Graphs with Vertex Replacement Grammars”. 2019.
15 Sikdar, S., Shah, N., andWeninger, T. “Attributed GraphModeling with Vertex Replacement Grammars”. 2022.
16 Aguiñaga, S. et al. “Growing Graphs fromHyperedge Replacement Graph Grammars”. 2016.
17 Aguiñaga, S., Chiang, D., andWeninger, T. “Learning Hyperedge Replacement Grammars for Graph Generation”. 2019.

14

Can we learn data-driven
grammar rules?

14

Neural Architecture

Neural Architecture Grammar Neural Network Architecture

G

φθ

φθ(v1)...
φθ(vn)



 p(e1)...
p(em)

 G

L(G, ŷ, y)

G : the input graph

φθ : graph neural network

φθ(vi) : node embeddings

p(ei) : edge probabilities

G : graph grammar

ŷ : predicted node labels

y : true node labels

L : loss function

Given an input graph G, we compute node embeddingsφθ(vi) and predict class labels ŷ.

The embeddings also determine probabilities p(ei) for iid Bernoulli random variables on

each edge. We obtain a grammarG by iteratively sampling edges. The joint loss function

L(G, ŷ, y) then optimizes for a good grammar and good classification performance.

15

Neural Architecture Node & Edge Embeddings

For simplicity, nodes are embedded by a graph isomorphism network18

φθ(X) = MLP
((

A+ (1+ ε)I
)
X
)

with edge embeddings as a paraboloidal function of node embeddings19

p(xu, xv) =
(4xu2 − 4xu + 1) + (4xv2 − 4xv + 1) + 2ε

2+ 4ε

18 Xu, K. et al. “How Powerful are Graph Neural Networks?” 2019.
19Sinceφθ(X) is a stochastic tensor, p(xu, xv) can be treated like probabilities.

16

Neural Architecture Joint Optimization

We jointly optimize an affine combination of two loss functions

L(G, ŷ, y) = λL(G) + (1− λ)L(ŷ, y)

with a loss for the classification task given by

L(ŷ, y) = CrossEntropy(ŷ, y)

The loss for the grammar should be inversely proportional to the number
of patterns the rules describe, which we call compressibility here

L(G) ∝ 1− Compressibility(G) =
of rules up-to-isomorphism

of distinct rules

17

Neural Architecture Learning with Non-Differentiable Losses

For gradient optimization, we would like to compute∇θL(G, ŷ, y) but
we can’t becauseL(G) is not differentiable in θ.

TreatG like a random variable20 and apply the policy-gradient theorem21

∇θE
[
L(G)

]
= E

[
L(G)

(
∇θ log p(G)

)]
and estimate the expectation using Monte Carlo sampling

E
[
L(G)

(
∇θ log p(G)

)]
≈ 1

N

N∑
i=1

L(Gi)
(
∇θ log p(Gi)

)

20Recall that we constructG by randomly sampling edges.
21 Williams, R. J. “Simple statistical gradient-following algorithms for connectionist reinforcement learning”. 1992.

18

Results

Results Dataset

Description of the EllipticBitcoin dataset.

Total Labeled # Licit # Illicit # Features

Nodes 203 769 46 564 42 019 4 545 165

Edges 234 355 36 624 – – –

19

Results Loss Behavior

0 10 20 30 40 50
Epoch

0.1

1

Lo
ss

EllipticBitcoin
Joint loss
Classification Cross Entropy
Grammar Compressibility

A comparison of the three different loss functions over 50 epochs.
We have clearly yet to converge the node classifier.

20

Results Grammar Sizes

0 10 20 30 40 50
Epoch

1000

10000
Nu

m
be

r o
f R

ul
es

EllipticBitcoin
Original
Compressed

Average sizes of the grammars before and after compressing isomorphic rules.

21

Results Sampling Stability

0 10 20 30 40 50
Epoch

0.850

0.855

0.860

0.865

0.870
Po

lic
y

Gr
ad

ie
nt

EllipticBitcoin
Samples
Monte Carlo estimate

Average of four Monte Carlo samples estimatingE
[
L(G)

(
∇θ log p(G)

)]
.

22

Results Examples of Frequent Rules

Epoch 1

The most popular rule from one of the sampled grammars at epoch 1.
This rule occurred 2093 times.

23

Results Examples of Frequent Rules

Epoch 50

×1208 ×437 ×174

The three most frequent rules from one of the grammars at epoch 50.
Their respective frequencies are shown below.

24

Results Moving Forward

Next steps on the way to publication:

1. Determine an adequate number of Monte Carlo samples per epoch.

2. Find good values for the hyperparameter λ that weighs the losses.

3. GINs may be underparametrized—consider GCNs or GATs.

4. Experiment with more sophisticated grammar losses.

5. Consider parametrizing the edge embeddings.

6. Find a better way to determine nonterminal symbols.

25

Results Acknowledgements

Sanmitra Bhattacharya

TimWeninger

Sal Aguiñaga

Balaji Veeramani

Sunil Reddy Tiyyagura

26

Thank you!

26

Appendix Infrequent Rules

Epoch 50

Examples of (near)-combs of various lengths.

Appendix Infrequent Rules

Epoch 50

Examples of narrow subgraphs with one cycle.

Appendix Infrequent Rules

Epoch 50

Examples of subgraphs with large hubs.

Appendix Infrequent Rules

Epoch 50

Examples of weird subgraphs.

	Introduction to the Problem
	Deloitte's Goals
	Fraud Detection
	Areas of Application
	Detecting Fraud
	Explainability

	Proposed Solution
	Graph Grammars
	Relevance of Graph Grammars
	Rule Extraction
	An Example
	Graph Generation
	Rules as Subgraph Explainers
	Moving Away from Heuristics

	Neural Architecture
	Grammar Neural Network Architecture
	Node & Edge Embeddings
	Joint Optimization
	Learning with Non-Differentiable Losses

	Results
	Dataset
	Loss Behavior
	Grammar Sizes
	Sampling Stability
	Examples of Frequent Rules
	Moving Forward
	Acknowledgements

	Appendix
	Infrequent Rules

