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Introduction About Me

• Born in Havana, Cuba
• Education

• B.Sc. in Comp. Sci. (FIU)
• B.Sc. in Math (FIU)
• M.Sc. in Math (FSU)

• Teaching
• Precalculus Algebra at FSU
• Discrete Math at ND

• Spring 2022
• Spring 2023
• Fall 2023

• Summer 2023 withWilliam
Theisen at ND
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Introduction Prior Work

1. The Infinity Mirror Test for GraphModels1

• Satyaki Sikdar, Daniel Gonzalez Cedre, TrentonW. Ford, TimWeninger

2. Subgraph-to-Subgraph Transitions2

• Justus Hibshman, Daniel Gonzalez Cedre, Satyaki Sikdar, TimWeninger

3. Motif Mining3

• William Theisen, Daniel Gonzalez Cedre, Zachariah Carmichael, Daniel Moreira,

TimWeninger, Walter Scheirer

1 Sikdar, S. et al. “The Infinity Mirror Test for GraphModels”. 2023.
2 Hibshman, J. I. et al. “Joint Subgraph-to-Subgraph Transitions: Generalizing Triadic Closure for Powerful and Interpretable Graph

Modeling”. 2021.
3 Theisen, W. et al. “Motif Mining: Finding and Summarizing Remixed Image Content”. 2023.
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Introduction A Brief History of GraphModeling

The 7 bridges of Königsberg, Prussia.4

4 Euler, L. “Solutio problematis ad geometriam situs pertinentis”. 1736.
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Introduction A Brief History of GraphModeling

The 7 bridges of Königsberg.
A multigraph representing the bridges
of Königsberg.

4



Introduction A Brief History of GraphModeling

Graphs are abstractions of connectivity structures.
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Introduction A Brief History of GraphModeling

The Fundamental Question of Data Modeling
How do we find an insightful abstraction
that accurately characterizes some data?
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Introduction Graph Neural Networks

(a) Convolutions aggregate neighborhoods
around pixels to update embeddings.

(b)Message passing aggregates neighborhoods
around nodes to update embeddings.
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Introduction Graph Neural Networks

Graph Neural Networks

Benefits
• Highly performant on a variety
of graph learning tasks

• Equivariance and permutation
invariance are good modeling
assumptions for graphs

Drawbacks
• Difficult to interpret
• Hidden inductive biases5

• Limited by message passing

1-hop message passing can not
distinguish two 3-cycles from a 6-cycle.6

5Sikdar et al. [10]
6Chen et al. [2]
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Introduction Graph Neural Networks

Graph neural nets are accurate, but not always insightful.
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Introduction Graph Grammars

X aaYbbb

(a) A string rule with left-handX and
right-hand string with boundary characters.

X
Y

(b) A graph rule with left-handX and
right-hand graph with boundary edges.
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Introduction Graph Grammars

Graph Grammars

Benefits
• Rules are interpretable
• Derivations are explainable
• Rules carry semantic meaning
• Relatively easy to analyze
• Highly performant on
constrained generative tasks

• molecule generation
• robot design

Drawbacks
• Not competitive at
unconstrained generation

• social networks
• temporal processes
• stochastic modeling

• Modeling assumptions may be
inappropriate for data

• Reliance on heuristics for
determining hyperparameters

• size of rules
• boundary conditions

12



Introduction Graph Grammars

Graph grammars are insightful, but not always accurate.

13



Dynamic Vertex Replacement Grammars



DyVeRG Vertex Replacement Grammar

A vertex replacement grammar G is specified by a setR of rules

• rules’ left-hand sides consist of a single nonterminal node

• rules’ right-hand sides are graphs with terminal, nonterminal, and
boundary structures

X
Y
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DyVeRG Static Rule Extraction

How do we learn rules?

(a) Select a subgraph and
compute its boundary.

2

(b) Create a rule
corresponding to the
subgraph and boundary.

2

(c) Compress the subgraph.

15



DyVeRG Static Graph Generation

How do we apply rules?

1
1

12

(a) Select a nonterminal
with its boundary edges.

2

(b) Choose a rule with
matching left-hand side.

1
1

1

(c) Replace the
nonterminal with the
subgraph and rewire
boundary edges randomly.
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DyVeRG Static Example
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DyVeRG Temporal Modeling

Rules are static, but real data is
:::::::::
dynamic.

How do we make vertex replacement grammars more
insightful and accurate when a graph changes?

18



DyVeRG Temporal Modeling

A temporal graph in discrete time is a sequence of graphs 〈G1, . . .GT〉.

(a) Time t = 1 (b) Time t = 2 (c) Time t = 3

edge added

edge deleted 19



DyVeRG Dynamically Updating Rules

1

Time t = 1

2

Time t = 2

The edit distance between these rules is 3.
edge added

edge deleted 20
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DyVeRG Dynamically Updating Rules

2

Time t = 1

1

Time t = 2

The edit distance between these rules is 7.
edge added

edge deleted 20



DyVeRG Measuring Temporal Change

We introduce the grammar edit distance for measuring temporal change.

Averaging this quantity over time gives a notion of the expected amount
of change in a temporal graph.

21



DyVeRG Results: Finding Impostors
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DyVeRG Results: Portrait Divergence
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DyVeRG Results: Spectral MMD
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DyVeRG Results: Interpretability

Ṗ1 ⇒ 2

Ṗ2 ⇒ 3

Ṗ3 10 ⇒ 8

Ṗ4 10 ⇒ 14

P̈1

P̈2

P̈3

P̈4

Some of the most frequent rule transitions from the EU Emails dataset.
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DyVeRG Key Observations

1. Vertex replacement rules look like transformations, but are not;
we introduce temporal rule transitions that

• make grammars more temporally insightful

• provide a measurement of temporal model accuracy

2. Hierarchical clustering constrains rules that can be learned.
How do we fix this?

26
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Better Priors for Graph Grammars



Better Priors for Graph Grammars Clustering is a Bad Prior

(a) Input graph

(b) Dendrogram determined by clustering

(c) Dendrogram determined by grammar

27



Better Priors for Graph Grammars Filtrations

Better filtrations lead to better rules.

How do we learn filtrations that fit our data?

28



Better Priors for Graph Grammars Filtrations

(a) d = 0 (b) d = 1 (c) d = 2 (d) d = 3 (e) d = 3

Some examples of simplicial complexes in various dimensions.

(a) f(v) ⩽ ℓ1 (b) f(v) ⩽ ℓ2 (c) f(v) ⩽ ℓ3 (d) ℓ3 < f(v)

A filtration of length 4 on a simplicial complex.

Filtrations are the level sets of a node valuation function f : V(G) → R.
29
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Better Priors for Graph Grammars Neural Grammars

We can learn f : V(G) → Rwith a graph neural network whose loss
optimizes a relevant objective for the data and the problem being solved.

G

f

G L(. . . )
Backprop

reinforce

Gradients are propagated back to the grammar G from the loss functionL using
the reinforce7 algorithm, and backpropagation goes the rest of the way.

7 Williams, R. J. “Simple statistical gradient-following algorithms for connectionist reinforcement learning”. 1992.
30



Better Priors for Graph Grammars Neural Grammars

1. This will produce grammars whose rules are learned by optimizing
an objective related to the data and the task.

2. Grammar rules are still not transformational.
How can we fix this?

31
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Learning Pushout Grammars



Learning Pushout Grammars Intuition

Rules should represent transformations between graph structures.

32



Learning Pushout Grammars Intuition
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Learning Pushout Grammars Intuition
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Learning Pushout Grammars Intuition
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Learning Pushout Grammars Intuition

A span is a way of associating a common interface between two graphs.

A pushout describes a way of gluing two graphs together along the
common interface described by a span.

34



Learning Pushout Grammars What is a Pushout?

A graph homomorphism is a function f : G → H between the vertices of
two graphs that preserves adjacency:

x ∼G y ⇒ f(x) ∼H f(y)

A span is a diagram consisting of
three graphs A,B,Cwith
homomorphisms between them as
follows:

C

A B

35



Learning Pushout Grammars What is a Pushout?

The pushout of a span is a cospan
that is homomorphically smaller than
any other candidate cospan

C

A B

P

Q

⌜

36



Learning Pushout Grammars What is a Double Pushout?

A double-pushout diagram is one that looks like two pushout diagrams
joined together

Aℓ C Ar

Pℓ B Pr
⌝ ⌜

37



Learning Pushout Grammars Double-Pushout Grammars

In a double-pushout grammar, the rules look like spans

L I Rℓ r

The application of a rule that transforms a subgraphHℓ into a new graph
Hr is given by a double-pushout diagram

L I R

Hℓ K Hr

mℓ

ℓ r

mr
⌝ ⌜

38



Learning Pushout Grammars Double-Pushout Grammars

We can learn one of these rules by working backwards from the
double-pushout. If we can learn a parallel filtration of two graphs, we can
determine the match morphismsmℓ andmr, and thereby the rule spans.

39



Conclusion



Conclusion Timeline

1. Submit DyVeRG paper: before this summer.

2. Better Priors for Graph Grammars: before end of Spring 2024

3. Learning Pushout Grammars: before end of Summer 2024

40



Thank you!
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Appendix Dynamic Vertex Replacement Grammars

Dynamic rule updates provide temporal transitions between rules based on
the observed changes between the snapshots 〈G0,G1, . . .GT〉.

A Dynamic Vertex Replacement Grammar is specified by:

• a sequence of rule sets 〈R0,R1, . . .RT〉, one for each timestep

• a set of transition functions πt : Rt → Rt+1 that map the rules Pt at
time t to their updated forms Pt+1 = πt(Pt) at time t+ 1

Temporal generation: to grow a graph at time t, apply rules fromRt.

For simplicity, we will only consider DyVeRG grammars that result from
updating Gt 7→ Gt+1 one timestep at-a-time.



Appendix Measuring Deviation

These temporal rule transitions help quantify the amount of change in a
graph from time t to t+ 1. We call this the deviation:

∆t+1 = ln

1 +
∑

Pt+1∈Rt+1

GED
(
π−1
t

({
Pt+1

})
,Pt+1

) (1)

where Pt is a rule belonging to the rule setRt at time t

Pt+1 is the updated form of Pt inRt+1

πt : Rt ↪→ Rt+1 is the projection πt(Pt) = Pt+1

GED
(
Ṗ, P̈

)
is the edit distance between Ṗ and P̈

The higher the minimum number of edits required to turn Gt into Gt+1 is,
the more deviation there must have been between the graphsGt andGt+1.
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Appendix Measuring Dyvergence

We estimate the expected deviation for a temporal graph by averaging the
sequential deviations over time:

At−1 =
1

t− 1

t−1∑
i=0

∆i (2)

and use these running averages to estimate the next deviation:

∆̂t = At−1 +
(
∆t−1 − At−2

)
(3)

We then measure the dyvergence of the timestep t 7→ t+ 1 by comparing
the deviation at that step to our historical estimate from the data:

dyvergence
(
Gt,Gt+1

)
= |∆t − ∆̂t| (4)



Appendix Experimental Setup

To evaluate the efficacy of dyvergence scores for modeling a temporal
dataset, we can compare the dyvergence of the ground-truth graphGt+1 to
that of an impostor graphGM

t+1 generated by a competing modelM.

If we assign a lower devergence to the ground truth than to an impostor
graph, then our model is correctly capturing temporal and topological
features of the dataset thatM is not taking into account.
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