A Transformational Approach to Graph Learning

Daniel Gonzalez Cedre

University of Notre Dame

25th of April, 2023

Overview

Introduction
Dynamic Vertex Replacement Grammars
Better Priors for Graph Grammars

Moving Beyond Context-Free

Introduction

Introduction About Me

* Born in Havana, Cuba
* Education
* B.Sc. in Comp. Sci. (FIU)
* B.Sc. in Math (FIU)
* M.Sc. in Math (FSU)
¢ Teaching
. at FSU
* Discrete Math at ND
* Spring 2022
* Spring 2023
e Fall 2023
* Summer 2023 with William
Theisen at ND

Introduction Prior Work

1. The Infinity Mirror Test for Graph Models'

® Satyaki Sikdar, Daniel Gonzalez Cedre, Trenton W. Ford, Tim Weninger
2. Subgraph-to-Subgraph Transitions*

® Justus Hibshman, Daniel Gonzalez Cedre, Satyaki Sikdar, Tim Weninger
3. Motif Mining?

® William Theisen, Daniel Gonzalez Cedre, Zachariah Carmichael, Daniel Moreira,

Tim Weninger, Walter Scheirer

! Sikdar, S. et al. “The Infinity Mirror Test for Graph Models”. 2023.
* Hibshman, J. I. et al. “Joint Subgraph-to-Subgraph Transitions: Generalizing Triadic Closure for Powerful and Interpretable Graph

Modeling”. 2021.

3 Theisen, W. et al. “Motif Mining: Finding and Summarizing Remixed Image Content”. 2023.

Introduction A Brief History of Graph Modeling

The 7 bridges of K6nigsberg, Prussia.*

4 . . . S >
Euler, L. “Solutio problematis ad geometriam situs pertinentis”. 1736.

Introduction A Brief History of Graph Modeling

A multigraph representing the bridges
The 7 bridges of Kénigsberg. of Konigsberg.

Introduction A Brief History of Graph Modeling

Graphs are abstractions of connectivity structures.

Introduction A Brief History of Graph Modeling

The Fundamental Question of Data Modeling

How do we find an

that accurately characterizes some data?

Introduction A Brief History of Graph Modeling

1934

Sociogram”
A
KA
o—@—e

N\,

Introduction A Brief History of Graph Modeling

1934 1959

Random Graphs?
[]

Introduction

A Brief History of Graph Modeling

1934 1959 1983
Stochastic
Random Graphs?
n Onl P2 Block Modelé
°
[V
./
N
0’:@7 3\8\’\

Introduction A Brief History of Graph Modeling

1934 1959 1983 1998
Stochastic
Random Graphs?
an Onl raphs Block Model®
0
oW
./
0’:@7 I&Q\’\
. M 8%>® Small-World

Networks™

Introduction A Brief History of Graph Modeling

1934 1959 1983 1998 1999

Stochastic Preferential
Random Graphs?
n Onl P2 Block Modelé Attachment'

W
SmallWorld N8 °®
Networks™

Introduction A Brief History of Graph Modeling

1934 1959 1983 1998 1999 2009

Stochastic Preferential ~ Graph Neural
Random Graphs? %
n Onl P2 Block Modelé Attachment' Networks

W
SmallWorld N8 °®
Networks™

Introduction A Brief History of Graph Modeling

1934 1959 1969 1983 1998 1999 2009

Stochastic Preferential ~ Graph Neural
Random Graphs? %
n Onl P2 Block Modelé Attachment' Networks

W
SmallWorld N8 °®
Networks™

Web Grammars®

Introduction A Brief History of Graph Modeling

1934 1959 1969 1983 1997 1998 1999 2009

Stochastic Preferential ~ Graph Neural
Random Graphs? %
n Onl P2 Block Modelé Attachment' Networks

W
SmallWorld N8 °®
Networks™

Web Grammars® Handbook of
Graph Grammars?

Introduction A Brief History of Graph Modeling

1934 1959 1969 1983 1997 1998 1999 2009 2016 —

Stochastic Preferential ~ Graph Neural
Random Graphs? %
n Onl P2 Block Modelé Attachment' Networks

W
SmallWorld N8 °®
Networks™

Handbook of

Learnable
8
Web Grammars Graph Grammars®

Grammars

Introduction A Brief History of Graph Modeling

1934 1959 1969 1983 1997 1998 1999 2009 2016 —

Stochastic Preferential ~ Graph Neural
Random Graphs? B
n Onl P2 Block Modelé Attachment' Networks

W
SmallWorld N8 °®
Networks™

Web Grammars® Handbook of
Graph Grammars?

Introduction Graph Neural Networks

(a) Convolutions aggregate (b) Message passing aggregates

around pixels to update embeddings. around nodes to update embeddings.

Introduction Graph Neural Networks

Graph Neural Networks
Benefits
* Highly performant on a variety Difficult to interpret
of graph learning tasks Hidden inductive biases®
* Equivariance and permutation Limited by message passing

invariance are good modeling

assumptions for graphs o—eo
NN

l-hOp message passing can not

distinguish rwo 3-cycles from a 8

SSikdar etal. [10]

6Chen etal. [2]

Introduction Graph Neural Networks

Graph neural nets are accurate, but not always

10

Introduction Graph Grammars

°
—> aaybb — ol e

(a) A string rule with left-hand X and (b) A graph rule with left-hand X and
right-hand string with . right-hand graph with

Introduction

Graph Grammars

Graph Grammars

Benefits
* Rules are interpretable
¢ Derivations are explainable
* Rules carry semantic meaning

* Relatively easy to analyze
* Highly performant on
constrained generative tasks
* molecule generation

* robot design

Not competitive at
unconstrained generation
social networks
temporal processes
stochastic modeling
Modeling assumptions may be
inappropriate for data
Reliance on heuristics for
determining hyperparameters
size of rules

boundary conditions

Introduction Graph Grammars

Graph grammars are , but not always accurate.

Dynamic Vertex Replacement Grammars

Vertex Replacement Grammar

A vertex replacement grammar G is specified by a set R of rules
* rules’ left-hand sides consist of a single nonterminal node

* rules’ right-hand sides are graphs with terminal, nonterminal, and

structures

?\

)

_) .\

<)

14

DyVeRG Static Rule Extraction

How do we learn rules?

°
\ []
o—o \
\.—./T ._.\ _®
/ \ ° ° o—o” |
o—"° / \ °
s, D— ess o\
.: |. :. ./. -0 .I>.
(a) Selecta subgraphand (b) Create arule (c) Compress the subgraph.
compute its . corresponding to the

subgraph and

DyVeRG Static Graph Generation

How do we apply rules?

o—(0
o . ./ \
o D— es s 1
*
(a) Select a nonterminal (b) Choose a rule with (c) Replace the
with its . matching left-hand side. nonterminal with the

subgraph and rewire

randomly.

16

DyVeRG Static Graph Generation

How do we apply rules?

o—(0
o . ./ \
Dr—o 2 — s G
*
(a) Select a nonterminal (b) Choose a rule with (c) Replace the
with its . matching left-hand side. nonterminal with the

subgraph and rewire

randomly.

16

DyVeRG Static Example

/\ ‘ 0000000000000 0000

DyVeRG Static Example

DyVeRG Static Example

DyVeRG Static Example

° !

b
Ne—e !

e\ ® eececcccccoe

& e

o*
XYY XYY
o
— o8 s

-

DyVeRG Static Example

°

—\ :

’ .>o—o/7 ﬁ r’

° 0000000 °®

N (M
0000000

DyVeRG Static Example

°
~\ :
’ .\0—0/7 ’_A:‘W_I%Ll r’
/./\ [0000000)
/ —
Yssewn
0000000000

DyVeRG Static Example

°
o\ ’? '
.>o— r,
~o \ eoeoo ®
0% —_—
| [TTTT)
e000000000

DyVeRG Static Example

° !
oo

N =
/./.\ YY) °
& —

DyVeRG Static Example

m\._ | r’
/./ \ L4 L4
(Dl ——
M | T
0000000000000
bt °
@— o9 Q— e 0 —-e7]

DyVeRG Static Example

’ [T
\ e | T
/./ .\ °® ®
& —t

DyVeRG Static Example

rO/
@7
0000000000000000
125 o\ _e
@ — O\,O\.,O @—> e Q—>-e It
® 0
— o—, — O\—

DyVeRG Static Example

/'0/
@7
{
| M | T
00000000000000000
125 o\ _e
@ — 0\,0\.,0 0 — .l,o 0 —-e ‘
® 0
— o—, — O\—

DyVeRG Static Example

@
f_lﬁ
00000000000000000
. .\ o
— «X s B — Do D —-e"]
® \ /E]
D — oy, 0 — Je—0 ©— 8
\E] /

DyVeRG Temporal Modeling

Rules are static, but real data is dynamic.

How do we make vertex replacement grammars more

and accurate when a graph changes?

DyVeRG Temporal Modeling

A temporal graph in discrete time is a sequence of graphs (G1, ... G7).

e @og
° L 6
o—e. ° .—O\ °
>o—o/| /o'—o/l
o\ ° 2 AN
SO g !
oo o® 150 °®
° °
(a) Timesr =1 (b) Time s = 2

(c) Times =3

......... edge added
edge deleted

DyVeRG Dynamically Updating Rules

\ [d
o—o” | Ne—eo !
o\ ¢ 7\ e
7 . 2 e
o) [Ne ¢
oo o e &°
®
......... edge added

edge deleted 20

DyVeRG Dynamically Updating Rules

% o 9-.q
o—\ L\ e
—@ o— s
\._./? .\ s _®
e ® o—@e |
o—* \ o\ ®
‘. .‘ I.\. () .l/ I. C)
V) - ~ -
.\|./. ® l. /. o
. :.
— o, — o2,
Timer=1 Timer =2

The edit distance between these rules is 3.
--------- edge added

edge deleted 20

DyVeRG Dynamically Updating Rules

° o ..
% 4
o—eo” | o—eo |
/ [] / '~.,.
o\ o\
|. | [e ® .l |
~ -
ol o Lo *
/.“.' <
— o0 o] — o0
oy Y
Timer=1 Timer = 2

The edit distance between these rules is 7.
--------- edge added

edge deleted 20

Measuring Temporal Change

We introduce the for measuring temporal change.

Averaging this quantity over time gives a notion of the expected amount

of change in a temporal graph.

21

Results: Finding Impostors

° DNC Emails 1 EU Emails |

Q 2t R

g

5 \ M

g 1} /y 0.5 1

S

3 4

Eoo"‘;;_ —— g e —— ——|
£ s5p =222 - 5

v 5 O = = ==

g 3 e = 3

A I 2R R R QPP HEHS 1 [e e e R R R R R

12345678910 12345678910
° 0.8 |- DBLP Facebook
S 0.6 {1 02 1
L
& 02f S~
. 4 ¥

w O 0 —
g 5l==========/ 5| S == =======
X 900000 = =
S 3rz==-=¢ o 3f=====Z=-==
& I R PP5RRH5g L e e e e e = e |

123456738910 12345678910
t t

Erdos-Renyi — Chung-Lu — SBM — GraphRNN — VeRG — Ground Truth

Measuring deviation from the historical trend. Lower is better.
22

Results: Portrait Divergence

5
I} — ——————
g 1 DNC Emails | 1 EU Emails |
on —
—
4
A o5 1 os |
= f Fe—- W,
£ ol < 10]
] P S Y S N P S S S R S S S
P 12345678910 12345678910
3
o ——————— —————
g i DBLP | all — Facebook |
29
2 \/—\/_,
A o5t 1 0s |
o 0.5 — 0.5 ~
£

0r) 0)
&

12345678910 12345678910
t t

Erdos-Renyi — Chung-Lu — SBM — GraphRNN — VeRG — DyVeRG

Measuring dissimilarity of generated graphs. Lower is better.

23

Spectral MMD

: Spectral MMD

DNC Emails -|

Pral

EU Emails -

—_— .

~ " 7

12345678910

12345678910

Spectral MMD

DBLP -

—_—

——]

Facebook 4

e —eeemn

——

123456738910
t

123456738910
t

Erdos-Renyi — Chung-Lu — SBM — GraphRNN — VeRG — DyVeRG

Measuring dissimilarity of generated graphs. Lower is better.

24

DyVeRG Results: Interpretability

0O— O = — o
0O— 0O = — ..
s deld- = §— e
7N \ 1N
\ \./ N \./
— —e_| = — =e. |
/Nez 2
IV =

Some of the most frequent rule transitions from the EU Emails dataset.

25

Key Observations

1. Vertex replacement rules ook like transformations, but are not;
we introduce temporal rule transitions that

* make grammars more temporally

* provide a measurement of temporal model accuracy

26

Key Observations

1. Vertex replacement rules ook like transformations, but are not;
we introduce temporal rule transitions that

* make grammars more temporally

* provide a measurement of temporal model accuracy

2. Hierarchical clustering constrains rules that can be learned.

How do we fix this?

26

Better Priors for Graph Grammars

Better Priors for Graph Grammars Clustering is a Bad Prior

)
o—e
\._./? 00000000000000000
.//./ \. L4 (b) Dendrogram determined by clustering
| @
.’.l\‘. .I/\.
\./ I
() Input graph 00000000000000000

(c) Dendrogram determined by grammar

27

Better Priors for Graph Grammars Filtrations

lead to better rules.

How do we that fit our data?

28

Better Priors for Graph Grammars Filtrations

) [
[] .//. .’,' 7. 4\
..
° o/ \o H o=—_o— o
@d=0 (b)d=1 (©)d =2 (d)d =3 (€)d=3

Some examples of simplicial complexes in various dimensions.

29

Better Priors for Graph Grammars Filtrations

[
° o—® \I
/ \ / .\\
[[) [J ——
@d=0 (b)d=1 (©)d =2 d=3 (€)d=3
Some examples of simplicial complexes in various dimensions.
b
. .4
o= / / ‘e e ‘o
(a) flv) < 4y (b) Alv) < (c)flv) < L3 (d)£3 < flv)

A filtration of length 4 on a simplicial complex.

Filtrations are the level sets of a node valuation function f: V(G) — R.

29

Better Priors for Graph Grammars Neural Grammars

We can learn f: V(G) — R with a graph neural network whose loss

optimizes a relevant objective for the data and the problem being solved.

REINFORCE

Gradients are propagated back to the grammar G from the loss function £ using

the REINFORCE’ algorithm, and backpropagation goes the rest of the way.

7 Williams, R. J. “Simple statistical gradient-following algorithms for connectionist reinforcement learning”. 1992..

30

Better Priors for Graph Grammars Neural Grammars

1. This will produce grammars whose rules are learned by

an related to the data and the task.

31

Better Priors for Graph Grammars Neural Grammars

1. This will produce grammars whose rules are learned by

an related to the data and the task.

2. Grammar rules are still not tzansformational.

How can we fix this?

31

Learning Pushout Grammars

Learning Pushout Grammars Intuition

Rules should represent between graph structures.

32

Learning Pushout Grammars Intuition

<7 >
I I\
B i — — __ec
ol ol
® ®

33

Learning Pushout Grammars Intuition

|

33

Learning Pushout Grammars Intuition

|

J

— 0—0

33

Learning Pushout Grammars Intuition

J

— o—0-—
—— o-o
—— o—0-—

I
o0 —— () —
Ol o1 oI
\. [} \. [] \. []

33

Learning Pushout Grammars Intuition

A is a way of associating a common interface between two graphs.

A pushout describes a way of gluing two graphs together along the

common interface described by a

T

— 0—0

34

Learning Pushout Grammars What is a Pushout?

A is a function /1 G — H between the vertices of

two graphs that preserves adjacency:

2~y = flo) ~u)

A span is a diagram consisting of
three graphs 4, B, C with I
homomorphisms between them as ®

follows:

— 0—0

o

AN SN

A B

35

Learning Pushout Grammars What is a Pushout?

The pushout of a span is a cospan
that is homomorphically smaller than

any other candidate cospan

\
N7EE

/\

1 -

36

Learning Pushout Grammars What is a Double Pushout?

A double-pushout diagram is one that looks like two pushout diagrams
joined together
Ay +— C—— A4,

[-

Pp+——B—— P,

37

Learning Pushout Grammars Double-Pushout Grammars

In a double-pushout grammar, the rules look like spans
L«bt o134

The application of a rule that transforms a subgraph A} into a new graph
H, is given by a double-pushout diagram

Lt 77 \R

myp my
nl r

Hy +— K —— H,

38

Learning Pushout Grammars Double-Pushout Grammars

We can learn one of these rules by working backwards from the
double-pushout. If we can learn a parallel filtration of two graphs, we can

determine the match morphisms 72y and m,, and thereby the rule spans.

39

Conclusion

Conclusion Timeline

1. Submit DyVeRG paper: before this summer.
2. : before end of Spring 2024

3. Learning Pushout Grammars: before end of Summer 2024

40

Thank you!

Appendix Dynamic Vertex Replacement Grammars

Dynamic rule updates provide temporal transitions between rules based on

the observed changes between the snapshots (Go, G, . . . G7).
A Dynamic Vertex Replacement Grammar is specified by:
* asequence of rule sets (Ro, R1, . .. R7), one for each timestep

* aset of transition functions 7; : R, — R,41 that map the rules P; at
time 7 to their updated forms P,y 1 = m,(P;) at time # + 1

Temporal generation: to grow a graph at time t, apply rules from R,.

For simplicity, we will only consider DyVeRG grammars that result from

updating G; — G,11 one timestep at-a-time.

Appendix Measuring Deviation

These temporal rule transitions help quantify the amount of change in a
graph from time 7 to # 4+ 1. We call this the

=ln[1+ 3 GED(Wt1<{P,+1}),P,+1> ()

Pt+1 ERH»l

where P is a rule belonging to the rule set R, at time #
Py 1 is the updated form of P; in R, 11
7 : Ry < R4 is the projection m,(P;) = Py

GED <P, P) is the edit distance between Pand P

Appendix Measuring Deviation

These temporal rule transitions help quantify the amount of change in a
graph from time 7 to # 4+ 1. We call this the

=mf1+ Y GED<7rzl<{P,+1}>,Pf+1> (1)

Pry1€ER 41

where P is a rule belonging to the rule set R, at time #
Py 1 is the updated form of P; in R, 11
7 : Ry < R4 is the projection m,(P;) = Py

GED <P, P) is the edit distance between Pand P

The higher the minimum number of edits required to turn G; into G, 1 is,

the more there must have been between the graphs G; and G 1.

Appendix Measuring Dyvergence

We estimate the for a temporal graph by averaging the

sequential deviations over time:

|
—

1 t
A1 = P : A; (2)

z

I
=)

and use these running averages to estimate the next deviation:
Ar=4,1+ (At—l _At—Q) ()

We then measure the dyvergence of the timestep ¢ > £ + 1 by comparing

the deviation at that step to our historical estimate from the data:

~

dyvergence(Gt7 Gz+1) =|A;, — A (4)

Appendix Experimental Setup

To evaluate the efficacy of dyvergence scores for modeling a temporal
dataset, we can compare the dyvergence of the ground-truth graph G, 1 to
that of an impostor graph G/, generated by a competing model M.

If we assign a lower devergence to the ground truth than to an impostor
graph, then our model is correctly capturing temporal and topological

features of the dataset that M is not taking into account.

	Introduction
	About Me
	Prior Work
	A Brief History of Graph Modeling
	Graph Neural Networks
	Graph Grammars

	Dynamic Vertex Replacement Grammars
	Vertex Replacement Grammar
	Static Rule Extraction
	Static Graph Generation
	Static Example
	Temporal Modeling
	Dynamically Updating Rules
	Measuring Temporal Change
	Measuring Dyvergence
	Results: Finding Impostors
	Results: Portrait Divergence
	Results: Spectral MMD
	Results: Interpretability
	Key Observations

	Better Priors for Graph Grammars
	Clustering is a Bad Prior
	Filtrations
	Neural Grammars

	Learning Pushout Grammars
	Intuition
	The Algebraic Approach
	What is a Pushout?
	What is a Double Pushout?
	Double-Pushout Grammars
	Double-Pushout Grammars

	Conclusion
	Timeline

	Appendix

