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Motivation

I In general, not much is known about the monotone catenary degree of

numerical monoids. In the past, the monotone catenary degree in Krull

Monoids has been studied, but for numerical monoids, only the regular

catenary degree is well understood.

I We seek to gain a deeper understanding of the equivalent and adjacent

catenary degrees in order to characterize the relationship between monotone

and regular catenary degrees of numerical monoids.

I It is known that, for a numerical monoid M, cmon(M) � c(M). We aim to

determine when this inequality is strict, and when the two quantities are

equal.

Numerical Monoids

I A Numerical Monoid is a cofinite subset of the nonnegative integers closed

under the operation of addition. It is known that for every numerical monoid

M, there exists a minimal set of generators n1, . . . , nk, so for a monoid of this

form we will write

M = hn1, ..., nki = {a1n1 + ... + aknk | (a1, ...ak) 2 Nk}
Example
M = h4, 9, 11i = {0, 4, 8, 9, 11, 12, 13, 15, ...}

I The Set of Factorizations of an element m 2 M is defined as

Z(m) = {(a1, ..., ak) 2 Nk | a1n1 + ... + aknk = m}
Example
For M = h4, 9, 11i, Z(26) = {(2, 2, 0), (0, 1, 2)}

I The Length of a factorization z = (z1, . . . , zk) 2 Z(m) is defined as

|z| = z1 + · · · + zk

Example
Consider (2, 2, 0) 2 Z(26) |2, 2, 0| = 4

I We can define a Distance between factorizations based on the differences

of the coordinates of the factorizations.

Example
d((2, 2, 0), (0, 1, 2)) = 3

Factorization Graph

Factorizations of 46 in h5, 8, 11i
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Catenary Degrees

I Two factorizations z and z 0 are connected by an N-chain if there exists a

sequence z0, ..., zk 2 Z(m) such that z0 = z, ..., zk = z 0 and d(zi, zi+1)  N for

all i 2 {1, ...k � 1}.

I The catenary degree of an element m 2 M, c(m), is the minimum natural

number N such that there is an N-chain between any two factorizations of m.

I Besides the regular catenary degree, we are also concerned with the

equivalent, adjacent, and monotone catenary degrees. These behave

similarly to the regular catenary degree but with added restrictions.

Catenary Graph

Factorizations of 40 in h4, 7, 17i
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I We can remove the edge of length

7 and our graph stays connected.

I If we remove the edge of length 6,

our graph will be disconnected

I c(40) = 6

Different Types of Catenary Degrees
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I Equivalent Catenary Degree only deals with factorizations of the same length

I Adjacent Catenary Degree deals with moving from one length factorization to

the next

I Monotone Catenary Degree is the maximum of these two values

When is cmon(M) = c(M)?

For any monoid generated by an arithmetic sequence,

M = ha, a + d , ..., a + kdi, cmon(M) = c(M).
Furthermore, for any element m 2 M, cmon(m) = c(m).

Monoids Generated by � rithmetic Sequences
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Do Generalized � rithmetic Monoids Behave the Same Way?

In monoids generated by generalized arithmetic sequences

M = ha, ah + d , ah + 2di the monotone catenary is more nuanced.

Our research has led us to make the following observations:

I If gcd(h � 1, d) > 1, then we have that c(M) = cmon(M).
I if gcd(h � 1, d) = 1, we have several cases:

I If h < d , then c(M) < cmon(M).
I If h � d and c(M) < ceq(M), then c(M) < cmon(M)
I If h � d and c(M) = ceq(M), then c(M) = cmon(M)

When is cmon(M) > c(M)?

Given that the following two conditions hold, cmon(s) > c(s) for any element s in

any monoid M.

I ceq(s) > cadj(s)
I If s has two factorizations z1 and z2 of length l , there exists a factorization z3

of length q 6= l such that d(z1, z3) < ceq(s) and d(z2, z3) < ceq(s).

� Case Where cmon(M) > c(M)

Let M = hna, na + n, 2na + nx + 1i with x � 2. Then

I ceq(M) = na + nx + 1

I cadj(M) < na + nx + 1

I cmon(M) = na + nx + 1

I cmon(M) > c(M)

Example
Let M = h8, 10, 21i, so n = 2, a = 4, and x = 2. Then ceq(M) = cmon(M) = 13,

and c(M) = 5. Then cmon(M) > c(M).

cmon(M)� c(M) can be � rbitrarily Large

Monotone and Regular Catenary Degrees of

ha, a + 1,Fha, a + 1ii

I cmon(M) = a2 � 2a � 1

I c(M) = 2a � 3

I cmon(M)� c(M) =
a2 � 4a � 4

For large a, this difference can

grow arbitrarily large.

Conclusions

I In some monoids, namely those generated by arithmetic sequences,

cmon(M) = c(M).
I In generalized arithmetic monoids, we can have either cmon(M) > c(M) or

cmon(M) = c(M).
I In general, we expect that cmon(M) > c(M). In fact, the difference between

the two can grow arbitrarily large.
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