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Motivation

» In general, not much is known about the monotone catenary degree of
numerical monoids. In the past, the monotone catenary degree in Krull
Monoids has been studied, but for numerical monoids, only the regular
catenary degree is well understood.

» We seek to gain a deeper understanding of the equivalent and adjacent
catenary degrees in order to characterize the relationship between monotone
and regular catenary degrees of numerical monoids.

» Itis known that, for a numerical monoid M, Cmon(M) > c(M). We aim to
determine when this inequality is strict, and when the two quantities are
equal.

Numerical Monoids

» A Numerical Monoid is a cofinite subset of the nonnegative integers closed
under the operation of addition. It is known that for every numerical monoid
M, there exists a minimal set of generators ny, ..., nk, so for a monoid of this
form we will write
M= (ny,...nk) = {ainy + ... + aknk | (&, ...ax) € NK}
Example
M= (4,9,11)={0,4,8,9,11,12,13,15,...}
» The Set of Factorizations of an element m € M is defined as
Z(m) = {(a1,...,a) € N¥| ayny + ... + axne = m}
Example
For M = (4,9,11), Z(26) = {(2,2,0),(0,1,2)}
» The Length of a factorization z = (z1,...,z) € Z(m) is defined as
|z| =21+ + 2
Example
Consider (2,2,0) € 2(26) [2,2,0| = 4
» We can define a Distance between factorizations based on the differences
of the coordinates of the factorizations.
Example
d((2,2,0),(0,1,2)) =3

Factorization Graph

Factorizations of 46 in (5,8,11)
(6,2,0) 2 (7,0,1)

Catenary Degrees

» Two factorizations z and z’ are connected by an N-chain if there exists a
sequence Zy, ..., zx € Z(m) such that zy = z, ..., z = Z and d(z;, zj;1) < N for
allie {1, .k—1}.

» The catenary degree of an element m € M, ¢(m), is the minimum natural

number N such that there is an N-chain between any two factorizations of m.

» Besides the regular catenary degree, we are also concerned with the
equivalent, adjacent, and monotone catenary degrees. These behave
similarly to the regular catenary degree but with added restrictions.

Catenary Graph

Factorizations of 40 in (4,7,17)

(1 0“’0’0) » We can remove the edge of length

7 and our graph stays connected.
» If we remove the edge of length 6,
our graph will be disconnected
» c(40) =6

Different Types of Catenary Degrees

» Equivalent Catenary Degree only deals with factorizations of the same length

» Adjacent Catenary Degree deals with moving from one length factorization to
the next

» Monotone Catenary Degree is the maximum of these two values

When is Cpon(M) = c(M)?
For any monoid generated by an arithmetic sequence,

M = (a,a+d,...,a+ kd), cmon(M) = c(M).
Furthermore, for any element m € M, Cmon(m) = c(m).

Monoids Generated by Arithmetic Sequences
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Do Generalized Arithmetic Monoids Behave the Same Way?

In monoids generated by generalized arithmetic sequences
M = (a, ah+ d, ah+ 2d) the monotone catenary is more nuanced.
Our research has led us to make the following observations:
» If gcd(h —1,d) > 1, then we have that ¢(M) = Cnon(M).
» if gcd(h —1,d) = 1, we have several cases:
» If h < d, then ¢(M) < Cmon(M).
» If h> dand ¢(M) < ceq(M), then c(M) < Crmon(M)
» If h> d and ¢(M) = ceq(M), then c(M) = Cmon(M)
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When is Cpon(M) > c(M)?

Given that the following two conditions hold, cnon(S) > c(s) for any element s in
any monoid M.
» Ceq(S) > Cadi(s)
» If s has two factorizations z; and z of length /, there exists a factorization z3
of length q # I such that d(z;., z3) < Ceq(S) and d(zz, z3) < Ceq(S).

Case Where Cpon(M) > c(M)

Let M = (na,na+ n,2na+ nx + 1) with x > 2. Then

Ceq(M) = na+ nx +1

Cagi(M) < na+nx +1

Cmon(M) = na+ nx +1

Cmon(M) > c(M)
Example
Let M = (8,10,21),so n =2, a=4, and x = 2. Then Ceg(M) = Cmon(M) = 13,
and ¢(M) = 5. Then Cmon(M) > c(M).

Cmon(M) — ¢(M) can be rbitrarily Large

Monotone and Regular Catenary Degrees of
(a,a+1,F(a,a+1))

» Cmon(M) = @ —2a—1
» ¢(M)=2a-3
> Cmon(M) — c(M) =

& —-4a—-4

For large a, this difference can
grow arbitrarily large.

Conclusions

» In some monoids, namely those generated by arithmetic sequences,
Cman(M) = C(M)

» In generalized arithmetic monoids, we can have either ¢yon(M) > ¢(M) or
Cmon(M) = c(M).

» In general, we expect that cmon(M) > c(M). In fact, the difference between
the two can grow arbitrarily large.
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